کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411198 679184 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault tolerant control based on stochastic distributions via MLP neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Fault tolerant control based on stochastic distributions via MLP neural networks
چکیده انگلیسی

An optimal fault tolerant control (FTC) scheme using output probability density functions (PDFs) is studied for the general stochastic continuous time systems. Being different from the classical FTC problems, the measured information is the stochastic distribution of the system output rather than its value. The control objective is to use the output PDFs to design control schemes that can compensate the fault and attenuate the disturbance. A multi-layer perceptron (MLP) neural network is applied to approximate the output PDFs, with which nonlinear principal component analysis (NLPCA) can be used to reduce the model order. For the established continuous-time weighting system with disturbances and uncertainties which is used to link the input and the weights, an LMI-based feasible FTC method is presented to assure that the fault can be well measured and compensated, where the H∞ performance index for the uncertain error systems is optimized.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 4–6, January 2007, Pages 867–874
نویسندگان
, , , ,