کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411628 679578 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature selection for neutral vector in EEG signal classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Feature selection for neutral vector in EEG signal classification
چکیده انگلیسی

In the design of brain-computer interface systems, classification of Electroencephalogram (EEG) signals is the essential part and a challenging task. Recently, as the marginalized discrete wavelet transform (mDWT) representations can reveal features related to the transient nature of the EEG signals, the mDWT coefficients have been frequently used in EEG signal classification. In our previous work, we have proposed a super-Dirichlet distribution-based classifier. The proposed classifier performed better than the state-of-the-art support vector machine-based classifier. In this paper, we further study the neutrality of the mDWT coefficients. The mDWT coefficients have unit L1-norm and all the elements are nonnegative. Assuming the mDWT vector coefficients to be a neutral vector, we apply the proposed parallel nonlinear transformation (PNT) framework to transform them non-linearly into a set of independent scalar coefficients. Based on these scalar coefficients, feature selection strategy is proposed on the transformed feature domain. Experimental results show that the feature selection strategy helps improving the classification accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 174, Part B, 22 January 2016, Pages 937–945
نویسندگان
, , ,