کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411820 679591 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameter tuning of PID controller with reactive nature-inspired algorithms
ترجمه فارسی عنوان
تنظیم پارامتر کنترل کننده PID با الگوریتم های واکنشی الهام گرفته از طبیعت
کلمات کلیدی
کنترل کننده PID؛ الگوریتم تصادفی مبتنی بر جمعیت الهام گرفته از طبیعت ؛ الگوریتم های تکاملی؛ الگوریتم های ازدحام مبتنی بر هوش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• PSO is the most reactive nature-inspired algorithm among BA, HBA, GA, DE, CS and PSO.
• Population based nature-inspired algorithms (e.g., PSO, BA, HBA, DE and CS) can be used for online implementation of PID parameter tuning.
• Low population sizes in nature-inspired algorithms are sufficient for PID tuning to obtain reactive response of SCARA robot.

A PID controller is an electrical element for reducing the error value between a desired setpoint and an actual measured process variable. The PID controller operates according to its input parameters, which need to be set before its run. The optimal values of these parameters must be found during the so-called tuning process. Today, this process can be automatized using stochastic, nature-inspired, population-based algorithms, such as evolutionary and swarm intelligence-based algorithms. Unfortunately, these algorithms are too time consuming, and so the reactive, nature-inspired algorithms using a limited number of fitness function evaluations are proposed in this paper. Two reactive evolutionary algorithms (differential evolution and genetic algorithm), and four reactive, swarm intelligence-based algorithms (bat, hybrid bat, particle swarm optimization and cuckoo search), were used to tune the PID controller in our comparative study. Only ten individuals and ten iterations (generations) were used in order to select the most appropriate optimization algorithm for fast tuning of controller parameters. The results were compared using statistical analysis and showed that particle swarm optimization is the best option for such a task.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 84, October 2016, Pages 64–75
نویسندگان
, , , ,