کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412132 679613 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
ATM-based analysis and recognition of handball team activities
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
ATM-based analysis and recognition of handball team activities
چکیده انگلیسی

In this paper, a new methodology based on the Author Topic Model (ATM) method is presented to perform team activity recognition and analysis in handball videos. Instead of using players׳ trajectories we just rely on low level features related to local motion, the evolution of which is then modeled over time by the ATM. The proposed methodology is applied to the task of recognizing four kinds of team activities in handball videos from the CVBASE׳06 dataset and to analyze which are the most important elements of the activities. Our method is compared with two other ways of characterizing videos based on Bag-of-Words (BoW) and Latent Dirichlet Allocation (LDA) techniques. Our proposal obtains competitive results in terms of accuracy, computing time and interpretation of the results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 150, Part A, 20 February 2015, Pages 189–199
نویسندگان
, , , ,