کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412334 679627 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Autonomous tactile perception: A combined improved sensing and Bayesian nonparametric approach
ترجمه فارسی عنوان
ادراک لمس مستقل: روش ترکیبی بهبود یافته و رویکرد غیر پارامتری بیزی
کلمات کلیدی
سنجش تاکتیکی، شناسایی سطح و بافت، روش های غیر پارامتری بیزی، شتاب سنج، فراگیری ماشین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We present a new robust tactile sensor aimed at surface identification.
• We evaluate the performances of 7 features for surface identification.
• We use a Pitman–Yor process to autonomously learn a perception model.
• The model recognized all surfaces perfectly without providing the number of surfaces.
• Identification success rate on unseen data is over 90%.

In recent years, autonomous robots have increasingly been deployed in unknown environments and required to manipulate or categorize unknown objects. In order to cope with these unfamiliar situations, improvements must be made both in sensing technologies and in the capability to autonomously train perception models. In this paper, we explore this problem in the context of tactile surface identification and categorization. Using a highly-discriminant tactile probe based upon large bandwidth, triple axis accelerometer that is sensitive to surface texture and material properties, we demonstrate that unsupervised learning for surface identification with this tactile probe is feasible. To this end, we derived a Bayesian nonparametric approach based on Pitman–Yor processes to model power-law distributions, an extension of our previous work using Dirichlet processes Dallaire et al. (2011). When tested against a large collection of surfaces and without providing the actual number of surfaces, the tactile probe combined with our proposed approach demonstrated near-perfect recognition in many cases and achieved perfect recognition given the right conditions. We consider that our combined improvements demonstrate the feasibility of effective autonomous tactile perception systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 62, Issue 4, April 2014, Pages 422–435
نویسندگان
, , , ,