کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412413 679637 2013 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient feature selection and linear discrimination of EEG signals
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Efficient feature selection and linear discrimination of EEG signals
چکیده انگلیسی

Brain–Computer Interface systems (BCIs) based on Electroencephalogram (EEG) signal processing allow us to translate the subject's brain activities into control commands for computer devices. This paper presents an efficient embedded approach for feature selection and linear discrimination of EEG signals. In the first stage, four well-known feature extraction methods are used: Power spectral features, Hjorth parameters, Autoregressive modelling and Wavelet transform. From all the obtained features, the proposed method efficiently selects and combines the most useful features for classification with less computational requirements. Least Angle Regression (LARS) is used for properly ranking each feature and, then, an efficient Leave-One-Out (LOO) estimation based on the PRESS statistic is used to choose the most relevant features. Experimental results on motor-imagery BCIs problems are provided to illustrate the competitive performance of the proposed approach against other conventional methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 115, 4 September 2013, Pages 161–165
نویسندگان
, , , ,