کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412416 679637 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast convex conjugated algorithm for sparse recovery
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A fast convex conjugated algorithm for sparse recovery
چکیده انگلیسی

Sparse recovery aims to find the sparsest solution of an underdetermined system Xβ=yXβ=y. This paper studies simple yet efficient sparse recovery algorithms from a novel viewpoint of convex conjugacy. To this end, we induce a family of convex conjugated loss functions as a smooth approximation of l0-norml0-norm. Then we apply the additive form of half-quadratic (HQ) optimization to solve these loss functions and to reformulate the sparse recovery problem as an augmented quadratic constraint problem that can be efficiently computed by alternate minimization. At each iteration, we compute the auxiliary vector of HQ via minimizer function and then we project this vector into the nullspace of the homogeneous linear system Xβ=0Xβ=0 such that a feasible and sparser solution is obtained. Extensive experiments on random sparse signals and robust face recognition corroborate our claims and validate that our method outperforms the state-of-the-art l1 minimization algorithms in terms of computational cost and estimation error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 115, 4 September 2013, Pages 178–185
نویسندگان
, , ,