کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
412653 | 679673 | 2012 | 10 صفحه PDF | دانلود رایگان |

The parameters of mill load (ML) not only represent the load of the ball mill, but also determine the grinding production ratio (GPR) of the grinding process. In this paper, a novel soft sensor approach based on multi-spectral segments partial least square (PLS) model and on-line adaptive weighted fusion algorithm is proposed to estimate the ML parameters. At first, frequency spectrums of the shell vibration acceleration signals are obtained. Then the PLS sub-models are constructed with the low, medium and high frequency spectral segments. At last, the PLS sub-models are fused together with a new on-line adaptive weighted fusion algorithm to obtain the final soft sensor models. This soft sensor approach has been successfully applied in a laboratory-scale wet ball mill grinding process.
Journal: Neurocomputing - Volume 78, Issue 1, 15 February 2012, Pages 38–47