کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412683 679678 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient multi-objective learning algorithm for RBF neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An efficient multi-objective learning algorithm for RBF neural network
چکیده انگلیسی

Most of modern multi-objective machine learning methods are based on evolutionary optimization algorithms. They are known to be global convergent, however, usually deliver nondeterministic results. In this work we propose the deterministic global solution to a multi-objective problem of supervised learning with the methodology of nonlinear programming. As the result, the proposed multi-objective algorithm performs a global search of Pareto-optimal hypotheses in the space of RBF networks, determining their weights and basis functions. In combination with the Akaike and Bayesian information criteria, the algorithm demonstrates a high generalization efficiency on several synthetic and real-world benchmark problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 16–18, October 2010, Pages 2799–2808
نویسندگان
, ,