کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
412685 | 679678 | 2010 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modified post-nonlinear ICA model for online neural discrimination
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The nonlinear independent component analysis (NLICA) is an extension of the standard ICA model that does not restrict the mixing system to be linear. Different algorithms have been proposed to solve the NLICA problem, but, as the dimension of the problem increases, most of them present limitations such as poor accuracy and high computational cost. In this work, a novel structural model is proposed for the overdetermined NLICA problem (when there exist more sensors than sources), by adding a signal compaction block to the standard post-nonlinear (PNL) de-mixing model. The proposed methodology proves to be efficient in the feature extraction phase of a challenging high-dimensional online neural discrimination problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 16–18, October 2010, Pages 2820–2828
Journal: Neurocomputing - Volume 73, Issues 16–18, October 2010, Pages 2820–2828
نویسندگان
Eduardo F. Simas Filho, José Manoel de Seixas, Luiz Pereira Calôba,