کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412804 679683 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling radiation-induced lung injury risk with an ensemble of support vector machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Modeling radiation-induced lung injury risk with an ensemble of support vector machines
چکیده انگلیسی

Radiation-induced lung injury, radiation pneumonitis (RP), is a potentially fatal side-effect of thoracic radiation therapy. In this work, using an ensemble of support vector machines (SVMs), we build a binary RP risk model from clinical and dosimetric parameters. Patient/treatment data is partitioned into balanced subsets to prevent model bias. Forward feature selection, maximizing the area under the curve (AUC) for a cross-validated receiver operating characteristic (ROC) curve, is performed on each subset. Model parameter selection and construction occurs concurrently via alternating SVM and gradient descent steps to minimize estimated generalization error. We show that an ensemble classifier with a mean fusion function, five component SVMs, and limit of five features per classifier exhibits a mean AUC of 0.818—an improvement over previous SVM models of RP risk.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 10–12, June 2010, Pages 1861–1867
نویسندگان
, , , ,