کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412890 679688 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient voting prediction for pairwise multilabel classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Efficient voting prediction for pairwise multilabel classification
چکیده انگلیسی

The pairwise approach to multilabel classification reduces the problem to learning and aggregating preference predictions among the possible labels. A key problem is the need to query a quadratic number of preferences for making a prediction. To solve this problem, we extend the recently proposed QWeighted algorithm for efficient pairwise multiclass voting to the multilabel setting, and evaluate the adapted algorithm on several real-world datasets. We achieve an average-case reduction of classifier evaluations from n2 to n+dnlogn, where n is the total number of possible labels and d is the average number of labels per instance, which is typically quite small in real-world datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 7–9, March 2010, Pages 1164–1176
نویسندگان
, , ,