کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412918 679688 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybrid sampling on mutual information entropy-based clustering ensembles for optimizations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Hybrid sampling on mutual information entropy-based clustering ensembles for optimizations
چکیده انگلیسی

In this paper, we focus on the design of bivariate EDAs for discrete optimization problems and propose a new approach named HSMIEC. While the current EDAs require much time in the statistical learning process as the relationships among the variables are too complicated, we employ the Selfish gene theory (SG) in this approach, as well as a Mutual Information and Entropy based Cluster (MIEC) model is also set to optimize the probability distribution of the virtual population. This model uses a hybrid sampling method by considering both the clustering accuracy and clustering diversity and an incremental learning and resample scheme is also set to optimize the parameters of the correlations of the variables. Compared with several benchmark problems, our experimental results demonstrate that HSMIEC often performs better than some other EDAs, such as BMDA, COMIT, MIMIC and ECGA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 7–9, March 2010, Pages 1457–1464
نویسندگان
, , , , ,