کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412963 679708 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
RankVisu: Mapping from the neighborhood network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
RankVisu: Mapping from the neighborhood network
چکیده انگلیسی

Most multidimensional scaling methods focus on the preservation of dissimilarities to map high dimensional items in a low-dimensional space. However, the mapping function usually does not consider the preservation of small dissimilarities as important, since the cost is small with respect to the preservation of large dissimilarities. As a consequence, an item's neighborhoods may be sacrificed for the benefit of the overall mapping. We have subsequently designed a mapping method devoted to the preservation of neighborhood ranks rather than their dissimilarities: RankVisu. A mapping of data is obtained in which neighborhood ranks are as close as possible according to the original space.A comparison with both metric and non-metric MDS highlights the pros (in particular, cluster enhancement) and cons of RankVisu.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 13–15, August 2009, Pages 2964–2978
نویسندگان
, , , ,