کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412973 679708 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Outlier exploration and diagnostic classification of a multi-centre 1H-MRS brain tumour database
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Outlier exploration and diagnostic classification of a multi-centre 1H-MRS brain tumour database
چکیده انگلیسی

Non-invasive techniques such as magnetic resonance spectroscopy (MRS) are often required for assisting the diagnosis of tumours. Radiologists are not always accustomed to make sense of the biochemical information provided by MRS and they may benefit from computer-based support in their decision making. The high dimensionality of the MR spectra obscures atypical aspects of the data that may jeopardize their classification. In this study, we describe a method to overcome this problem that combines nonlinear dimensionality reduction, outlier detection, and expert opinion. MR spectra subsequently undergo a feature selection process followed by classification. The impact of outlier removal on classification performance is assessed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 13–15, August 2009, Pages 3085–3097
نویسندگان
, , , , , ,