کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
413019 679713 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Total variation norm-based nonnegative matrix factorization for identifying discriminant representation of image patterns
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Total variation norm-based nonnegative matrix factorization for identifying discriminant representation of image patterns
چکیده انگلیسی

The low-rank approximation technique of nonnegative matrix factorization (NMF) is emerging recently for finding parts-based structure of nonnegative data based on minimizing least-square error (L2L2 norm). However, it has been observed that the proper norm for image processing is the total variation norm (TVN) other than the L2L2 norm, and image denoising methods applying TVN can preserve clearer local features, such as edges and texture than L2L2 norm. In this paper, we propose a robust TVN-based NMF algorithm for identifying discriminant representation of image patterns. We provide update rule in optimality search process and prove mathematically convergence of the iteration. Experimental results show that the proposed TVNMF is more effective to describe local discriminant representation of image patterns than NMF.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 10–12, June 2008, Pages 1824–1831
نویسندگان
, , , , , ,