کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
413030 679713 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fusing gait and face cues for human gender recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Fusing gait and face cues for human gender recognition
چکیده انگلیسی

Computer vision-based gender classification is an interesting and challenging problem, and has potential applications in visual surveillance and human–computer interaction systems. In this paper, we investigate gender classification from human gaits in image sequences, a relatively understudied problem. Moreover, we propose to fuse gait and face for improved gender discrimination. We exploit canonical correlation analysis (CCA), a powerful tool that is well suited for relating two sets of measurements, to fuse the two modalities at the feature level. Experiments demonstrate that our multimodal gender recognition system achieves the superior recognition performance of 97.2% in large data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 10–12, June 2008, Pages 1931–1938
نویسندگان
, , ,