کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
413055 679713 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Overcomplete topographic independent component analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Overcomplete topographic independent component analysis
چکیده انگلیسی

Topographic and overcomplete representations of natural images/videos are important problems in computational neuroscience. We propose a new method using both topographic and overcomplete representations of natural images, showing emergence of properties similar to those of complex cells in primary visual cortex (V1). This method can be considered as an extension of model in Hyvärinen et al. [Topographic independent component analysis, Neural Comput. 13 (7) (2001) 1527–1558], which uses complete topographic representation. We utilize a sparse and approximately uncorrelated decompositions and define a topographic structure on coefficients (the dot products between basis vectors and whitened observed data vectors). The overcomplete topographic basis vectors can be learned via estimation of independent component analysis (ICA) model based on the prior assumption upon basis vectors. Computer simulations are provided to show the relationship between our model and the basic properties of complex cells in V1 cortex. The learned bases are shown to have better coding efficiency than ordinary topographic ICA (TICA) bases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 10–12, June 2008, Pages 2217–2223
نویسندگان
, ,