کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
413257 680383 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parametric POMDPs for planning in continuous state spaces
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Parametric POMDPs for planning in continuous state spaces
چکیده انگلیسی

This work addresses the problem of decision-making under uncertainty for robot navigation. Since robot navigation is most naturally represented in a continuous domain, the problem is cast as a continuous-state POMDP. Probability distributions over state space, or beliefs, are represented in parametric form using low-dimensional vectors of sufficient statistics. The belief space, over which the value function must be estimated, has dimensionality equal to the number of sufficient statistics. Compared to methods based on discretising the state space, this work trades the loss of the belief space’s convexity for a reduction in its dimensionality and an efficient closed-form solution for belief updates. Fitted value iteration is used to solve the POMDP. The approach is empirically compared to a discrete POMDP solution method on a simulated continuous navigation problem. We show that, for a suitable environment and parametric form, the proposed method is capable of scaling to large state-spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 54, Issue 11, 30 November 2006, Pages 887–897
نویسندگان
, , , ,