کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414697 | 681007 | 2006 | 10 صفحه PDF | دانلود رایگان |

In the present work, a knowledge-based system is developed for the prediction of surface roughness in turning process. Neural networks and fuzzy set theory are used for this purpose. Knowledge acquired from the shop floor is used to train the neural network. The trained network provides a number of data sets, which are fed to a fuzzy-set-based rule generation module. A large number of IF–THEN rules are generated, which can be reduced to a smaller set of rules by using Boolean operations. The developed rule base may be used for predicting surface roughness for given process variables as well as for the prediction of process variables for a given surface roughness. The concise set of rules helps the user in understanding the behavior of the cutting process and to assess the effectiveness of the model. The performance of the developed knowledge-based system is studied with the experimental data of dry and wet turning of mild steel with HSS and carbide tools.
Journal: Robotics and Computer-Integrated Manufacturing - Volume 22, Issue 4, August 2006, Pages 363–372