کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
414706 | 681009 | 2013 | 15 صفحه PDF | دانلود رایگان |

Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point–object pairs. In this paper, we address the algorithmic problem of determining whether a non-crossing matching exists between a given point–object pair. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their size is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete.
Journal: Computational Geometry - Volume 46, Issue 1, January 2013, Pages 78–92