کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414930 681121 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Monte Carlo approach to quantifying model error in Bayesian parameter estimation
ترجمه فارسی عنوان
رویکرد مونته کارلو برای کم کردن خطای مدل در برآورد پارامترهای بیزی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Quantifying the discrepancy between two distributions is considered, using the concept of ϕϕ-divergence. The motivation is a Bayesian inference scenario where one is interested in comparing different posterior distributions. Strongly consistent estimators for the ϕϕ-divergence between two posterior distributions are developed. The proposed estimators alleviate known computational difficulties with estimating normalizing constants. This approach can be used to study the impact that using an approximate likelihood has on the resulting posterior distribution and also to compare the effectiveness of different model approximations. The methodology is applied to two first-order emulator models and an oceanographic application where evaluation of the likelihood function involves the solution to a partial differential equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 83, March 2015, Pages 168–181
نویسندگان
, ,