کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
414946 681121 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
ترجمه فارسی عنوان
راندمان بالا و کارایی نمونه محدود و پایداری بر اساس حداکثر احتمال محدود بودن فاصله
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and ττ-estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 83, March 2015, Pages 262–274
نویسندگان
, ,