کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415054 681162 2012 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sample distribution function based goodness-of-fit test for complex surveys
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Sample distribution function based goodness-of-fit test for complex surveys
چکیده انگلیسی

Testing the parametric distribution of a random variable is a fundamental problem in exploratory and inferential statistics. Classical empirical distribution function based goodness-of-fit tests typically require the data to be an independent and identically distributed realization of a certain probability model, and thus would fail when complex sampling designs introduce dependency and selection bias to the realized sample. In this paper, we propose goodness-of-fit procedures for a survey variable. To this end, we introduce several divergence measures between the design weighted estimator of distribution function and the hypothesized distribution, and propose goodness-of-fit tests based on these divergence measures. The test procedures are substantiated by theoretical results on the convergence of the estimated distribution function to the superpopulation distribution function on a metric space. We also provide computational details on how to calculate test p-values, and demonstrate the performance of the proposed test through simulation experiments. Finally, we illustrate the utility of the proposed test through the analysis of US 2004 presidential election data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 3, 1 March 2012, Pages 664–679
نویسندگان
,