کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415144 681183 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An active set algorithm to estimate parameters in generalized linear models with ordered predictors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
An active set algorithm to estimate parameters in generalized linear models with ordered predictors
چکیده انگلیسی

In biomedical studies, researchers are often interested in assessing the association between one or more ordinal explanatory variables and an outcome variable, at the same time adjusting for covariates of any type. The outcome variable may be continuous, binary, or represent censored survival times. In the absence of precise knowledge of the response function, using monotonicity constraints on the ordinal variables improves efficiency in estimating parameters, especially when sample sizes are small. An active set algorithm that can efficiently compute such estimators is proposed, and a characterization of the solution is provided. Having an efficient algorithm at hand is especially relevant when applying likelihood ratio tests in restricted generalized linear models, where one needs the value of the likelihood at the restricted maximizer. The algorithm is illustrated on a real life data set from oncology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 6, 1 June 2010, Pages 1442–1456
نویسندگان
,