کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415672 681223 2006 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semiparametric estimation in perturbed long memory series
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Semiparametric estimation in perturbed long memory series
چکیده انگلیسی

The estimation of the memory parameter in perturbed long memory (LM) series has recently attracted attention. This has been mainly motivated by the adequacy of LM signal plus noise processes to model the behaviour of many financial and economic time series. In this context frequency domain semiparametric techniques are natural choices for the estimation of the memory parameter of the persistent signal. A new extension of the log periodogram regression that explicitly accounts for the added noise is proposed and its properties are compared with other existing techniques. A reduction of the asymptotic bias and a faster convergence are achieved because a larger bandwidth is permitted. Monte Carlo results confirm the bias reduction in finite samples. An application to a series of returns of the Spanish Ibex35 stock index is finally included.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 4, 15 December 2006, Pages 2118–2141
نویسندگان
,