کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415695 681226 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive profile-empirical-likelihood inferences for generalized single-index models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Adaptive profile-empirical-likelihood inferences for generalized single-index models
چکیده انگلیسی

We study generalized single-index models and propose an efficient equation for estimating the index parameter and unknown link function, deriving a quasi-likelihood-based maximum empirical likelihood estimator (QLMELE) of the index parameter. We then establish an efficient confidence region for any components of the index parameter using an adaptive empirical likelihood method. A pointwise confidence interval for the unknown link function is also established using the QLMELE. Compared with the normal approximation proposed by Cui et al. [Ann Stat. 39 (2011) 1658], our approach is more attractive not only theoretically but also empirically. Simulation studies demonstrate that the proposed method provides smaller confidence intervals than those based on the normal approximation method subject to the same coverage probabilities. Hence, the proposed empirical likelihood is preferable to the normal approximation method because of the complicated covariance estimation. An application to a real data set is also illustrated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 62, June 2013, Pages 70–82
نویسندگان
, , ,