کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416288 681324 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse HDLSS discrimination with constrained data piling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Sparse HDLSS discrimination with constrained data piling
چکیده انگلیسی

Regularization is a key component in high dimensional data analyses. In high dimensional discrimination with binary classes, the phenomenon of data piling occurs when the projection of data onto a discriminant vector is dichotomous, one for each class. Regularizing the degree of data piling yields a new class of discrimination rules for high dimension–low sample size data. A discrimination method that regularizes the degree of data piling while achieving sparsity is proposed and solved via a linear programming. Computational efficiency is further improved by a sign-preserving regularization that forces the signs of the estimator to be the same as the mean difference. The proposed classifier shows competitive performances for simulated and real data examples including speech recognition and gene expressions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 90, October 2015, Pages 74–83
نویسندگان
, ,