کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
416293 | 681325 | 2006 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved predictions penalizing both slope and curvature in additive models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
![عکس صفحه اول مقاله: Improved predictions penalizing both slope and curvature in additive models Improved predictions penalizing both slope and curvature in additive models](/preview/png/416293.png)
چکیده انگلیسی
A new method is proposed to estimate the nonlinear functions in an additive regression model. Usually, these functions are estimated by penalized least squares, penalizing the curvatures of the functions. The new method penalizes the slopes as well, which is the type of penalization used in ridge regression for linear models. Tuning (or smoothing) parameters are estimated by permuted leave-k-out cross-validation. The prediction performance of various methods is compared by a simulation experiment: penalizing both slope and curvature is either better than or as good as penalizing curvature only.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 50, Issue 2, 30 January 2006, Pages 267–284
Journal: Computational Statistics & Data Analysis - Volume 50, Issue 2, 30 January 2006, Pages 267–284
نویسندگان
Magne Aldrin,