کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416443 681370 2012 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient Bayesian inference for stochastic time-varying copula models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Efficient Bayesian inference for stochastic time-varying copula models
چکیده انگلیسی

There is strong empirical evidence that dependence in multivariate financial time series varies over time. To model this effect, a time varying copula class is developed, which is called the stochastic copula autoregressive (SCAR) model. Dependence at time tt is modeled by a real-valued latent variable, which corresponds to the Fisher ZZ transformation of Kendall’s ττ for the chosen copula family. This allows for a common scale so that a general range of copula families including the Gaussian, Clayton and Gumbel copulas can be used and compared in our modeling framework. The inclusion of latent variables makes maximum likelihood estimation computationally difficult, therefore a Bayesian approach is followed. This approach allows the computation of credibility intervals in addition to point estimates. Two Markov Chain Monte Carlo (MCMC) sampling algorithms are proposed. The first one is a naïve approach using Metropolis–Hastings within Gibbs, while the second is a more efficient coarse grid sampler. The performance of these samplers are investigated in a simulation study and are applied to data involving financial stock indices. It is shown that time varying dependence is present for this data and can be quantified by estimating the underlying time varying Kendall’s ττ with point-wise credible intervals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 6, June 2012, Pages 1511–1527
نویسندگان
, ,