کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416499 681374 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust joint modeling of mean and dispersion through trimming
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Robust joint modeling of mean and dispersion through trimming
چکیده انگلیسی

The Maximum Likelihood Estimator (MLE) and Extended Quasi-Likelihood (EQL) estimator have commonly been used to estimate the unknown parameters within the joint modeling of mean and dispersion framework. However, these estimators can be very sensitive to outliers in the data. In order to overcome this disadvantage, the usage of the maximum Trimmed Likelihood Estimator (TLE) and the maximum Extended Trimmed Quasi-Likelihood (ETQL) estimator is recommended to estimate the unknown parameters in a robust way. The superiority of these approaches in comparison with the MLE and EQL estimator is illustrated by an example and a simulation study. As a prominent measure of robustness, the finite sample Breakdown Point (BDP) of these estimators is characterized in this setting.


► Robust fitting of generalized linear models with varying dispersion is developed.
► Fitting is based on the maximum Extended Trimmed Quasi Likelihood estimator.
► This estimator is calculated as the classical counterpart based on subsamples.
► An algorithm and software in R are proposed to handle the computation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 1, 1 January 2012, Pages 34–48
نویسندگان
, , ,