کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416589 681388 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Selection of artificial neural network models for survival analysis with Genetic Algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Selection of artificial neural network models for survival analysis with Genetic Algorithms
چکیده انگلیسی

In follow-up clinical studies, the main time end-point is the failure from a specific starting point (e.g. treatment, surgery). A deeper investigation concerns the causes of failure. Statistical analysis typically focuses on the study of the cause specific hazard functions of possibly censored survival data. In the framework of discrete time models and competing risks, a multilayer perceptron was already proposed as an extension of generalized linear models with multinomial errors using a non-linear predictor (PLANNCR). According to standard practice, weight-decay was adopted to modulate model complexity. A Genetic Algorithm is considered for the complexity control of PLANNCR allowing to regularize independently each parameter of the model. The ICOMP information criterion is used as fitness function. To demonstrate the criticality and the benefits of the technique an application to a case series of 1793 women with primary breast cancer without axillary lymph node involvement is presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 1, 15 September 2007, Pages 30–42
نویسندگان
, , , ,