کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
416589 | 681388 | 2007 | 13 صفحه PDF | دانلود رایگان |

In follow-up clinical studies, the main time end-point is the failure from a specific starting point (e.g. treatment, surgery). A deeper investigation concerns the causes of failure. Statistical analysis typically focuses on the study of the cause specific hazard functions of possibly censored survival data. In the framework of discrete time models and competing risks, a multilayer perceptron was already proposed as an extension of generalized linear models with multinomial errors using a non-linear predictor (PLANNCR). According to standard practice, weight-decay was adopted to modulate model complexity. A Genetic Algorithm is considered for the complexity control of PLANNCR allowing to regularize independently each parameter of the model. The ICOMP information criterion is used as fitness function. To demonstrate the criticality and the benefits of the technique an application to a case series of 1793 women with primary breast cancer without axillary lymph node involvement is presented.
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 1, 15 September 2007, Pages 30–42