کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416621 681388 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression
چکیده انگلیسی
The monitoring of the expression profiles of thousands of genes have proved to be particularly promising for biological classification. DNA microarray data have been recently used for the development of classification rules, particularly for cancer diagnosis. However, microarray data present major challenges due to the complex, multiclass nature and the overwhelming number of variables characterizing gene expression profiles. A regularized form of sliced inverse regression (REGSIR) approach is proposed. It allows the simultaneous development of classification rules and the selection of those genes that are most important in terms of classification accuracy. The method is illustrated on some publicly available microarray data sets. Furthermore, an extensive comparison with other classification methods is reported. The REGSIR performance is comparable with the best classification methods available, and when appropriate feature selection is made the performance can be considerably improved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 1, 15 September 2007, Pages 438-451
نویسندگان
,