کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416628 681388 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dimension reduction via principal variables
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Dimension reduction via principal variables
چکیده انگلیسی

For many large-scale datasets it is necessary to reduce dimensionality to the point where further exploration and analysis can take place. Principal variables are a subset of the original variables and preserve, to some extent, the structure and information carried by the original variables. Dimension reduction using principal variables is considered and a novel algorithm for determining such principal variables is proposed. This method is tested and compared with 11 other variable selection methods from the literature in a simulation study and is shown to be highly effective. Extensions to this procedure are also developed, including a method to determine longitudinal principal variables for repeated measures data, and a technique for incorporating utilities in order to modify the selection process. The method is further illustrated with real datasets, including some larger UK data relating to patient outcome after total knee replacement.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 1, 15 September 2007, Pages 550–565
نویسندگان
, ,