کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416753 681398 2006 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel method for testing normality in a mixed model of a nested classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A novel method for testing normality in a mixed model of a nested classification
چکیده انگلیسی

Normality is one of the most common assumptions made in the development of statistical models such as the fixed effect model and the random effect model. White and MacDonald [1980. Some large-sample tests for normality in the linear regression model. JASA 75, 16–18] and Bonett and Woodward [1990. Testing residual normality in the ANOVA model. J. Appl. Statist. 17, 383–387] showed that many tests of normality perform well when applied to the residuals of a fixed effect model. The elements of the error vector are not independent in random effects models and standard tests of normality are not expected to perform properly when applied to the residuals of a random effects model.In this paper, we propose a transformation method to convert the correlated error vector into an uncorrelated vector. Moreover, under the normality assumption, the uncorrelated vector becomes an independent vector. Thus, all the existing methods can then be implemented. Monte-Carlo simulations are used to evaluate the feasibility of the transformation. Results show that this transformation method can preserve the Type I error and provide greater powers under most alternatives.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 2, 15 November 2006, Pages 1163–1183
نویسندگان
, ,