کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416834 681404 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence diagnostics in generalized symmetric linear models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Influence diagnostics in generalized symmetric linear models
چکیده انگلیسی

The aim of this paper is to introduce generalized symmetric linear models (GSLMs) in the same sense of generalized linear models (GLMs), in which a link function is defined to establish a relationship between the mean values of symmetric distributions and linear predictors. The class of symmetric distributions contains various distributions with lighter and heavier tails than normal and hence offers a more flexible basis for analyzing symmetric data. An iteratively reweighed least squares (IRLS) algorithm is derived to obtain maximum likelihood estimates. The local influence methodology is applied to study the sensitivity of the maximum likelihood estimates under some usual perturbation schemes, such as case-weight, response variable, continuous explanatory variable and scale parameter perturbations. We also discuss generalized leverage and residual analysis. Finally, an illustration is given in which the methodology developed in this paper is applied to a real data set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 59, March 2013, Pages 161–170
نویسندگان
, , , ,