کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416841 681408 2006 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using principal components for estimating logistic regression with high-dimensional multicollinear data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Using principal components for estimating logistic regression with high-dimensional multicollinear data
چکیده انگلیسی

The logistic regression model is used to predict a binary response variable in terms of a set of explicative ones. The estimation of the model parameters is not too accurate and their interpretation in terms of odds ratios may be erroneous, when there is multicollinearity (high dependence) among the predictors. Other important problem is the great number of explicative variables usually needed to explain the response. In order to improve the estimation of the logistic model parameters under multicollinearity and to reduce the dimension of the problem with continuous covariates, it is proposed to use as covariates of the logistic model a reduced set of optimum principal components of the original predictors. Finally, the performance of the proposed principal component logistic regression model is analyzed by developing a simulation study where different methods for selecting the optimum principal components are compared.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 50, Issue 8, 10 April 2006, Pages 1905–1924
نویسندگان
, , ,