کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417348 | 681489 | 2007 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parallelizing AdaBoost by weights dynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
AdaBoost is one of the most popular classification methods. In contrast to other ensemble methods (e.g., Bagging) the AdaBoost is inherently sequential. In many data intensive real-world situations this may limit the practical applicability of the method. P-AdaBoost is a novel scheme for the parallelization of AdaBoost, which builds upon earlier results concerning the dynamics of AdaBoost weights. P-AdaBoost yields approximations to the standard AdaBoost models that can be easily and efficiently distributed over a network of computing nodes. Properties of P-AdaBoost as a stochastic minimizer of the AdaBoost cost functional are discussed. Experiments are reported on both synthetic and benchmark data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 5, 1 February 2007, Pages 2487–2498
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 5, 1 February 2007, Pages 2487–2498
نویسندگان
Stefano Merler, Bruno Caprile, Cesare Furlanello,