کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417413 681501 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of αα-stable distributions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of αα-stable distributions
چکیده انگلیسی

The class of αα-stable distributions enjoys multiple practical applications in signal processing, finance, biology and other areas because it allows to describe interesting and complex data patterns, such as asymmetry or heavy tails, in contrast with the simpler and widely used Gaussian distribution. The density associated with a general αα-stable distribution cannot be obtained in closed form, which hinders the process of estimating its parameters. A nonlinear population Monte Carlo (NPMC) scheme is applied in order to approximate the posterior probability distribution of the parameters of an αα-stable random variable given a set of random realizations of the latter. The approximate posterior distribution is computed by way of an iterative algorithm and it consists of a collection of samples in the parameter space with associated nonlinearly-transformed importance weights. A numerical comparison of the main existing methods to estimate the αα-stable parameters is provided, including the traditional frequentist techniques as well as a Markov chain Monte Carlo (MCMC) and a likelihood-free Bayesian approach. It is shown by means of computer simulations that the NPMC method outperforms the existing techniques in terms of parameter estimation error and failure rate for the whole range of values of αα, including the smaller values for which most existing methods fail to work properly. Furthermore, it is shown that accurate parameter estimates can often be computed based on a low number of observations. Additionally, numerical results based on a set of real fish displacement data are provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 95, March 2016, Pages 57–74
نویسندگان
, , , ,