کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417536 681534 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized extreme value distribution with time-dependence using the AR and MA models in state space form
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Generalized extreme value distribution with time-dependence using the AR and MA models in state space form
چکیده انگلیسی

A new state space approach is proposed to model the time-dependence in an extreme value process. The generalized extreme value distribution is extended to incorporate the time-dependence using a state space representation where the state variables either follow an autoregressive (AR) process or a moving average (MA) process with innovations arising from a Gumbel distribution. Using a Bayesian approach, an efficient algorithm is proposed to implement Markov chain Monte Carlo method where we exploit an accurate approximation of the Gumbel distribution by a ten-component mixture of normal distributions. The methodology is illustrated using extreme returns of daily stock data. The model is fitted to a monthly series of minimum returns and the empirical results support strong evidence of time-dependence among the observed minimum returns.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 11, November 2012, Pages 3241–3259
نویسندگان
, , , ,