کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417682 681560 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inference in HIV dynamics models via hierarchical likelihood
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Inference in HIV dynamics models via hierarchical likelihood
چکیده انگلیسی

HIV dynamical models are often based on non-linear systems of ordinary differential equations (ODE), which do not have an analytical solution. Introducing random effects in such models leads to very challenging non-linear mixed-effects models. To avoid the numerical computation of multiple integrals involved in the likelihood, a hierarchical likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood is proposed. The asymptotic distribution of the maximum h-likelihood estimators (MHLE) for fixed effects is given. The MHLE are slightly biased but the bias can be made negligible by using a parametric bootstrap procedure. An efficient algorithm for maximizing the h-likelihood is proposed. A simulation study, based on a classical HIV dynamical model, confirms the good properties of the MHLE. The method is applied to the analysis of a clinical trial.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 55, Issue 1, 1 January 2011, Pages 446–456
نویسندگان
, , , , ,