کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418082 681610 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Missing data imputation, matching and other applications of random recursive partitioning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Missing data imputation, matching and other applications of random recursive partitioning
چکیده انگلیسی

Applications of the random recursive partitioning (RRP) method are described. This method generates a proximity matrix which can be used in non-parametric matching problems such as hot-deck missing data imputation and average treatment effect estimation. RRP is a Monte Carlo procedure that randomly generates non-empty recursive partitions of the data and calculates the proximity between observations as the empirical frequency in the same cell of these random partitions over all the replications. Also, the method in the presence of missing data is invariant under monotonic transformations of the data but no other formal properties of the method are known yet. Therefore, Monte Carlo experiments were conducted in order to explore the performance of the method. A companion software is available as a package for the R statistical environment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 2, 15 October 2007, Pages 773–789
نویسندگان
, ,