کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
419860 683868 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison of lower bounds for the symmetric circulant traveling salesman problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A comparison of lower bounds for the symmetric circulant traveling salesman problem
چکیده انگلیسی

When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare different lower bounds on the optimal value that may be computed in polynomial time. We derive a new linear programming (LP) relaxation of the SCTSP from the semidefinite programming (SDP) relaxation in [E. de Klerk, D.V. Pasechnik, R. Sotirov, On semidefinite programming relaxation of the traveling salesman problem, SIAM Journal of Optimization 19 (4) (2008) 1559–1573]. Further, we discuss theoretical and empirical comparisons between this new bound and three well-known bounds from the literature, namely the Held-Karp bound [M. Held, R.M. Karp, The traveling salesman problem and minimum spanning trees, Operations Research 18 (1970) 1138–1162], the 1-tree bound, and the closed-form bound for SCTSP proposed in [J.A.A. van der Veen, Solvable cases of TSP with various objective functions, Ph.D. Thesis, Groningen University, The Netherlands, 1992].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 159, Issue 16, 28 September 2011, Pages 1815–1826
نویسندگان
, ,