کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
420684 683968 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using a similarity measure for credible classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Using a similarity measure for credible classification
چکیده انگلیسی

This paper concerns classification by Boolean functions. We investigate the classification accuracy obtained by standard classification techniques on unseen points (elements of the domain, {0,1}n{0,1}n, for some nn) that are similar, in particular senses, to the points that have been observed as training observations. Explicitly, we use a new measure of how similar a point x∈{0,1}nx∈{0,1}n is to a set of such points to restrict the domain of points on which we offer a classification. For points sufficiently dissimilar, no classification is given. We report on experimental results which indicate that the classification accuracies obtained on the resulting restricted domains are better than those obtained without restriction. These experiments involve a number of standard data-sets and classification techniques. We also compare the classification accuracies with those obtained by restricting the domain on which classification is given by using the Hamming distance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 157, Issue 5, 6 March 2009, Pages 1104–1112
نویسندگان
, , , ,