کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
425248 | 685710 | 2014 | 18 صفحه PDF | دانلود رایگان |
• We propose a scalable event matching service for attribute-based pub/sub model.
• HPartition adapts to skewed subscriptions and achieves high matching throughput.
• PDetection adapts to the sudden change of workloads with low latency.
• We implement a thorough and systematic evaluation of our approach.
Due to the sudden change of the arrival live content rate and the skewness of the large-scale subscriptions, the rapid growth of emergency applications presents a new challenge to the current publish/subscribe systems: providing a scalable and elastic event matching service. However, most existing event matching services cannot adapt to the sudden change of the arrival live content rate, and generate a non-uniform distribution of load on the servers because of the skewness of the large-scale subscriptions. To this end, we propose SEMAS, a scalable and elastic event matching service for attribute-based pub/sub systems in the cloud computing environment. SEMAS uses one-hop lookup overlay to reduce the routing latency. Through a hierarchical multi-attribute space partition technique, SEMAS adaptively partitions the skewed subscriptions and maps them into balanced clusters to achieve high matching throughput. The performance-aware detection scheme in SEMAS adaptively adjusts the scale of servers according to the churn of workloads, leading to high performance–price ratio. A prototype system on an OpenStack-based platform demonstrates that SEMAS has a linear increasing matching capacity as the number of servers and the partitioning granularity increase. It is able to elastically adjust the scale of servers and tolerate a large number of server failures with low latency and traffic overhead. Compared with existing cloud based pub/sub systems, SEMAS achieves higher throughput in various workloads.
Journal: Future Generation Computer Systems - Volume 36, July 2014, Pages 102–119