کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426141 686000 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced semi-supervised local Fisher discriminant analysis for face recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Enhanced semi-supervised local Fisher discriminant analysis for face recognition
چکیده انگلیسی

An improved manifold learning method, called enhanced semi-supervised local Fisher discriminant analysis (ESELF), for face recognition is proposed. Motivated by the fact that statistically uncorrelated and parameter-free are two desirable and promising characteristics for dimension reduction, a new difference-based optimization objective function with unlabeled samples has been designed. The proposed method preserves the manifold structure of labeled and unlabeled samples in addition to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally optimal solution and it can be computed based on eigen decomposition. Experiments on synthetic data and AT&T, Yale and CMU PIE face databases are performed to test and evaluate the proposed algorithm. The experimental results and comparisons demonstrate the effectiveness of the proposed method.

Research highlights
► ESELF is a novel semi-supervised manifold learning method.
► ESELF exploits both manifold structure and discriminant information simultaneously.
► ESELF exploits both statistically uncorrelated and parameter-free characteristics.
► ESELF provides a better representation of the face image.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 28, Issue 1, January 2012, Pages 244–253
نویسندگان
, , ,