کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426730 686250 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smoothed model checking for uncertain Continuous-Time Markov Chains
ترجمه فارسی عنوان
مدل های مدل هموار برای بررسی زنجیره مارکوف پیوسته زمان نامشخص
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

We consider the problem of computing the satisfaction probability of a formula for stochastic models with parametric uncertainty. We show that this satisfaction probability is a smooth function of the model parameters under mild conditions. This enables us to devise a novel Bayesian statistical algorithm which performs model checking simultaneously for all values of the model parameters from observations of truth values of the formula over individual runs of the model at isolated parameter values. This is achieved by exploiting the smoothness of the satisfaction function: by modelling explicitly correlations through a prior distribution over a space of smooth functions (a Gaussian Process), we can condition on observations at individual parameter values to construct an analytical approximation of the function itself. Extensive experiments on non-trivial case studies show that the approach is accurate and considerably faster than naive parameter exploration with standard statistical model checking methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 247, April 2016, Pages 235–253
نویسندگان
, , ,