کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4319273 1290806 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neuroprotective effect of CPDT on THA-induced cortical motor neuron death in an organotypic culture model
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب سلولی و مولکولی
پیش نمایش صفحه اول مقاله
Neuroprotective effect of CPDT on THA-induced cortical motor neuron death in an organotypic culture model
چکیده انگلیسی

Brain stroke, trauma, and motor neuron disease each can result in cortical motoneuron (CMN) death or impairment. Glutamate excitotoxicity induces motor neuron damage in both acute motor neuron loss and chronic motor neuron degeneration. It is necessary to find effective strategies to protect CMNs from excitotoxicity in a variety of pathological conditions. 5,6-Dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) is one of the phase II enzyme inducers. In our previous report, CPDT was shown to have neuroprotective effects on the spinal cord, by activating the Nrf2/ARE pathway to increase antioxidative capacity. In this study, in order to figure out whether CPDT can prevent CMN's from THA-induced death, we set up an organotypic brain slice culture system. Threo-hydroxyaspartate (THA), a glutamate transport inhibitor, was added to the culture medium to induce CMN death by glutamate excitotoxicity. Brain slices were pretreated with CPDT for 48 h, then treated with CPDT and THA simultaneously for 3 weeks. We found that pretreatment with CPDT significantly increased CMN survival. Glutamate concentration in the culture medium was significantly greater following THA treatment, whereas no significant decrease was found in the CPDT pretreatment group. However, both Nrf2 and HO-1 protein expression was significantly elevated in the CPDT pretreatment group, and Nrf2 protein translocated to the nucleus after CPDT stimulation. These findings suggest that CPDT can protect CMNs from THA-induced motor neuron death by activating the Nrf2 pathway and increasing HO-1 protein expression. Therefore, increasing antioxidative defense capacity should benefit to upper motor neuron survival following a glutamate excitotoxicity insult.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research Bulletin - Volume 83, Issue 6, 20 November 2010, Pages 345–350
نویسندگان
, , , , , , , , , ,