کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4320715 1291525 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Perceptual Decision-Making as Probabilistic Inference by Neural Sampling
ترجمه فارسی عنوان
تصمیم گیری ادراکی به عنوان استدلال احتمالی توسط نمونه برداری عصبی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب سلولی و مولکولی
چکیده انگلیسی


• Task structure constrains feedback signals in a probabilistic inference framework
• These feedback signals cause choice probabilities and noise correlations
• Task-dependent noise correlations are predicted to increase with learning
• In our neural sampling-based representation, feedback signals cause a confirmation bias

SummaryWe address two main challenges facing systems neuroscience today: understanding the nature and function of cortical feedback between sensory areas and of correlated variability. Starting from the old idea of perception as probabilistic inference, we show how to use knowledge of the psychophysical task to make testable predictions for the influence of feedback signals on early sensory representations. Applying our framework to a two-alternative forced choice task paradigm, we can explain multiple empirical findings that have been hard to account for by the traditional feedforward model of sensory processing, including the task dependence of neural response correlations and the diverging time courses of choice probabilities and psychophysical kernels. Our model makes new predictions and characterizes a component of correlated variability that represents task-related information rather than performance-degrading noise. It demonstrates a normative way to integrate sensory and cognitive components into physiologically testable models of perceptual decision-making.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 90, Issue 3, 4 May 2016, Pages 649–660
نویسندگان
, , ,