کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4322886 | 1291738 | 2006 | 14 صفحه PDF | دانلود رایگان |

SummaryTrafficking of AMPA receptors (AMPA-Rs) to and from synapses controls the strength of excitatory synaptic transmission. However, proteins that cluster AMPA-Rs at synapses remain poorly understood. Here we show that PSD-95-like membrane-associated guanylate kinases (PSD-MAGUKs) mediate this synaptic targeting, and we uncover a remarkable functional redundancy within this protein family. By manipulating endogenous neuronal PSD-MAGUK levels, we find that both PSD-95 and PSD-93 independently mediate AMPA-R targeting at mature synapses. We also reveal unanticipated synapse heterogeneity as loss of either PSD-95 or PSD-93 silences largely nonoverlapping populations of excitatory synapses. In adult PSD-95 and PSD-93 double knockout animals, SAP-102 is upregulated and compensates for the loss of synaptic AMPA-Rs. At immature synapses, PSD-95 and PSD-93 play little role in synaptic AMPA-R clustering; instead, SAP-102 dominates. These studies establish a PSD-MAGUK-specific regulation of AMPA-R synaptic expression that establishes and maintains glutamatergic synaptic transmission in the mammalian central nervous system.
Journal: - Volume 52, Issue 2, 19 October 2006, Pages 307–320